US009286079B1

a2 United States Patent 10) Patent No.: US 9,286,079 B1
Roden et al. 45) Date of Patent: Mar. 15, 2016
(54) CACHE OPTIMIZATION OF A DATA 5,307,497 A 4/1994 Feigenbaum et al.
STORAGE DEVICE BASED ON PROGRESS JaasTio & lg; Lo ;m et alt~ |
)) ura et al.
OF BOOT COMMANDS 5,636,355 A 6/1997 Ramakrishnan et al.
. 5,713,024 A 1/1998 Halladay
(75) Inventors: Thomas A. Roden, Irvine, CA (US); 5,724,501 A 3/1998 Dewey etal.
Robert M. Fallone, Newport Beach, CA 5,812,883 A 9/1998 Rao
(Us) 5,832,005 A 11/1998 Singh
5,966,732 A 10/1999 Assaf
. - . 5,978,922 A 11/1999 Arai et al.
(73) Assignee: Wgstern Digital Technologies, Inc., 6.073.232 A 6/2000 Krglelier ot al.
Irvine, CA (US) 6,098,158 A 2000 Layetal.
6,101,574 A 8/2000 Kumasawa et al.
(*) Notice: Subject to any disclaimer, the term of this 6,209,088 Bl 3/2001 Reneris
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 874 days.
FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 13/174,760
Jp 06-110786 A 4/1994
(22) Filed: Jun. 30,2011
OTHER PUBLICATIONS
(51) Imt.ClL .
GOG6F 9/44 (2006.01) Office Action dated Jun. 27, 2005 from U.S. Appl. No. 10/185,880,
GOGF 15/177 (2006.01) 17 pages.
GO6F 12/08 (2006.01) . .
GOGF 11/10 (2006.01) Prlr.nary Examn.wr — Jaweed A Abbaszadeh
GOGF 11/30 (200601) Assistant Examiner — Terrell Johnson
(52) US.CL
CPC GOG6F 9/4401 (2013.01); GO6F 11/1076 7 ABSTRACT
(2013.01); GO6F 11/3055 (2013.01); GO6F The present invention relates to optimizing the performance
12/0804 (2013.01); GO6F 12/0866 (2013.01); of a data storage device, such as a hard data storage device,
GO6F 15/177 (2013.01) during boot operations and normal operations. In particular,
(58) Field of Classification Search during power up, the data storage device monitors the nature
CPC . GOGF 9/4401; GOGF 15/177; GOGF 12/0804; and progress of commands issued from a host. During boot
GOG6F 12/0866; GO6F 11/1076; GO6F 11/3055 operations, the data storage device sets its cache to a boot
USPC i 713/2 mode. The boot mode is designed to speed the boot process
See application file for complete search history. and aggressively cache data used during boot up of the data
. storage device and the host. The data storage device detects
(56) References Cited the transition of the host operations from boot operations to

U.S. PATENT DOCUMENTS

5,155,833 A 10/1992 Cullison et al.
5,269,019 A 12/1993 Peterson et al.
5,269,022 A 12/1993 Shinjo et al.

normal operations based on various criteria. The caching
mode of the data storage device is then changed for normal
operations based on the transition.

22 Claims, 7 Drawing Sheets

Boot Transition

= False

Boot Transition
=True

Cammand ==
Disable Revert
ORCQD> 17

End

DISABLE

REVERT
4
POWER | BIOS | MBR | OPERATING SYSTEMLOAD | NORMAL OPERATIONS
BOOT TIME

TRANSITION

US 9,286,079 B1

Page 2
(56) References Cited 8,082,433 Bl 12/2011 Fallone et al.
2001/0039612 Al 112001 Lee
U.S. PATENT DOCUMENTS 2002/0069354 Al* 6/2002 Fallonetal. 713/2
2002/0156970 Al 10/2002 Stewart

6,226,740 B1* 5/2001 Iga ..coocooviovriiiriiiiirnnnas 713/2 2003/0005223 Al* 1/2003 Coulsonetal. 711/118
6,286,108 Bl 9/2001 Kamo et al. 2003/0135729 Al 7/2003 Mason, Jr. et al.
6,434,696 Bl 8/2002 Kang 2003/0142561 Al 7/2003 Mason, Jr. et al.
6,449,683 Bl 9/2002 Silvester 2003/0212857 Al 11/2003 Pacheco et al.
6,539,456 B2 3/2003 Stewart 2004/0003223 Al 1/2004 Fortin et al.
6,662,267 B2 12/2003 Stewart 2004/0064647 Al 4/2004 DeWhitt et al.
6,745,283 Bl 6/2004 Dang 2006/0294352 Al 12/2006 Morrison et al.
6,807,630 B2 10/2004 Lay etal. 2007/0005883 Al 1/2007 Trika
6,901,477 B2* 5/2005 Sullivanccoccevcrnnee.. 711/113 2007/0038850 Al* 2/2007 Matthewsetal. 713/1
6,904,496 B2 6/2005 Raves et al. 2007/0083743 Al 4/2007 Tsang
6,968,450 Bl 11/2005 Rothberg et al. 2007/0083746 Al 4/2007 Fallon et al.
6,993,649 B2 1/2006 Hensley 2008/0147985 Al* 6/2008 Astigarragaetal. 711/135
7,099,993 B2 8/2006 Keeler 2008/0209198 Al 8/2008 Majni et al.
7,107,444 B2 9/2006 Fortin et al. 2010/0070747 Al* 3/2010 lyigunetal. ... 713/2
7,130,962 B2 10/2006 Garney 2010/0077194 Al* 3/2010 Zhaoetal. 7132
7,181,608 B2 2/2007 Fallon et al. 2010/0077197 Al* 3/2010 Erganetal 713/2
7461,202 B2 12/2008 Forrer, Jr. et al. 2011/0010502 Al* 12011 Wangetal.cecoeene. 711/128
7,464,250 B2 12/2008 Dayan et al. 2012/0066447 Al* 3/2012 Colgroveetal. 711/114
7,669,044 B2 2/2010 Fitzgerald et al.
7,900,037 Bl 3/2011 Fallone et al. * cited by examiner

U.S. Patent Mar. 15, 2016 Sheet 1 of 7 US 9,286,079 B1

P ittt i,
s IS ..

.(&%’,,_fm”« _,j; ;)/

FIGURE 1

e
Rt

NN

A,
e ~
~ ~

N
TRt e
-

A,
=% e
A
%
o
prs
S8
et <67

SEE

o ‘“{&

3

DARTA STORAGE

P Hoy .,

" Gk By ot

et B T b2 et L
‘ b i b
N %
P23 P

5y
1243

Sheet 2 of 7

Mar. 15, 2016

U.S. Patent

SNOLLYSTIdO TYIWHON

aAvO1 NF1SAS ONILYH3dO

NOLLISNVL

US 9,286,079 B1

Sheet 3 of 7

Mar. 15, 2016

U.S. Patent

NOILISNVHL
JNIL 1004d
A | E 1
SNOILVYH3dO TVINHON avo1 W31SAS ONILYH3dO HaN SOlg | 43amod
SANVINNOD
SANVINWOD
TVYNOILYH3dO TVNOILVYH3dO
N
N
SR
SANVINWOD SANVINWOD
10049 100d
£ N9

US 9,286,079 B1

Sheet 4 of 7

Mar. 15, 2016

U.S. Patent

NOILISNVdL
1004

SNOILVH3dO TVINHON

aAvOT1N3LSAS ONILVHIdO

d9N sold

d3IMOd

SE R
& SR /
§ SN
%, g
i o
FACCVNUNNVENENNY m ,,,,,,,,,,,,,,,

v
&
o

T S

14S

F AH001

US 9,286,079 B1

Sheet S of 7

Mar. 15, 2016

U.S. Patent

NOILISNVYHL
JNIL Lood
s ———— J s— S
SNOI1LVH3Id0O TVINHON aAvO1 INFLSAS ONILVHIdO d9N SOIg | 43aMOd
1H3dA3A
31gvsid
puz
¢T<40dH0 ANHER
1aAsy aigesiq v
SIA == PUBLIWOD ON
MUY = _|1 asjed =
uoiIsuE. } 3009 uonIsuel] 1009 Alla

U.S. Patent Mar. 15, 2016 Sheet 6 of 7 US 9,286,079 B1

4 Y
g ;
)] —
Z
O
l_
<
Y
L
o
O
—
<
=
S
Zz 5
o=
o_
& o}
0 Fer S 2
FQ/\ W 8 —
& [3 1
c "l
Y
w3
3 €
T T 0
, o Folz
O —y>
o 96———<
‘ w i
o
% 14
o
=

POWER | BIOS

U.S. Patent Mar. 15, 2016 Sheet 7 of 7 US 9,286,079 B1

. LUl
)] —
Z
)
|_
<C
0
LU
o
O
-
<C
=
~ S
¢ _
U ¢ Z _9
7 3 =
= S D
R Z
4 F| O &(
- € < -
@)
|
=
LLI
|_
)
>_
@)
O
& <
P =
o, o
ron LU
: o
T @)
% ;
% o
o
m
=

FIGURE 7

POWER | BIOS

US 9,286,079 B1

1
CACHE OPTIMIZATION OF A DATA
STORAGE DEVICE BASED ON PROGRESS
OF BOOT COMMANDS

BACKGROUND

One significant measure of mass storage device perfor-
mance is the speed with which the computing system
becomes responsive to user input. This is highly dependent
upon the time it takes to perform the initial load of the Oper-
ating System (OS), which may be a cold-boot or a resume
from hibernation. Current approaches to optimizing this per-
formance focus on the time elapsed from power on or the first
time the media is accessed. Such approaches are dependent
upon the execution speed and device initialization sequence
of the Basic Input Output Services (BIOS) and the OS.

An approach that uses additional information available to
an attached mass storage device would provide a higher-
confidence determination of the transition from OS loading,
which tends to be repetitive, to the OS operational state,
which is less predictable. Accordingly, an optimization
approach, such as caching or predictive loading, would ben-
efit from the knowledge of the phase of initialization in force
at the time of a block access.

BRIEF DESCRIPTION OF THE DRAWINGS

Systems and methods which embody the various features
of the invention will now be described with reference to the
following drawings, in which:

FIG. 1 is a block diagram illustrating a bootable data stor-
age device according to one embodiment.

FIG. 2 illustrates an exemplary boot sequence of a host
using the data storage device as a bootable device;

FIG. 3 illustrates a flow diagram illustrating an exemplary
process and a transition in caching modes in accordance with
an embodiment.

FIG. 4 illustrates a flow diagram illustrating an exemplary
process for detecting a boot transition based on identifying a
boot command in accordance with an embodiment.

FIG. 5 illustrates a flow diagram illustrating an exemplary
process for detecting a boot transition based on identifying a
boot command or a command queue depth (CQD) in accor-
dance with an embodiment.

FIG. 6 illustrates a flow diagram illustrating an exemplary
process for boot transition based on identifying a plurality of
triggers in accordance with an embodiment.

FIG. 7 illustrates a flow diagram illustrating an exemplary
process for boot transition based on identifying a trigger and
then passage of a certain time delay in accordance with an
embodiment.

DETAILED DESCRIPTION

Certain configuration operations and data transfer modes
applied to a mass storage device strongly imply the transition
from initial load to operation. Detection of these operations
could be used to improve boot performance of mass storage
devices with much less sensitivity to the speed and sequential
optimization of the host. In a normal hard drive, reads and
writes related to booting or resumption from hibernation are
treated equally to reads and writes issued during normal
operation. Configuration operations, such as enabling the
read or write capabilities of the cache may indirectly affect
hard drive behavior, but these configuration operations are
blindly honored without any attempt to modify behavior
based on the perceived boot-mode of the drive.

20

25

30

40

45

50

55

2

The present invention is directed to systems and methods
for a data storage device, such as a hard drive, to optimize its
transition from boot to normal operations. Operations that
occur soon after power-on are identified as being useful for
boot and their blocks are marked or segregated to allow them
to be accessed more quickly in subsequent boots. The boot
transition detection of the embodiments may employ addi-
tional methods, such as the monitoring of specific configura-
tion commands and increases in the command queue depth, to
determine when accessed sectors are to be marked, segre-
gated and/or cached.

Certain embodiments of the inventions will now be
described. These embodiments are presented by way of
example only, and are not intended to limit the scope of the
inventions. Indeed, the novel methods and systems described
herein may be embodied in a variety of other forms. Further-
more, various omissions, substitutions and changes in the
form of the methods and systems described herein may be
made without departing from the spirit of the inventions. To
illustrate some of the embodiments, reference will now be
made to the figures.

FIG. 1 shows a disk-drive based data storage device 50
according to one embodiment. The data storage device 50
includes a head 2, actuated radially over a disk surface 4, by
an actuator arm 6, and a voice coil motor (VCM) 8 operable
to rotate the actuator arm 6, about a pivot. The disk surface 4,
such as 4,, comprises a host addressable area 10 with a
plurality of data tracks 18, wherein each data track 18 com-
prises a plurality of data blocks 20.

In the embodiment in FIG. 1, the disk surface 4, further
comprises a plurality of embedded servo sectors 30,-30, that
define the data tracks 18 in the host addressable area 10. The
data storage device 50 further comprises control circuitry 32,
which is operable to process a read signal 34 emanating from
the head 21 to demodulate the embedded servo sectors 30, -
30, and generate a position error signal (PES). The PES
represents a radial offset of the head 21 from a target data
track 18 in the host addressable area 10. The control circuitry
32 is further operable to process the PES with a suitable servo
compensator to generate a VCM control signal 36 applied to
the VCM 8. The VCM 8 rotates the actuator arm 61 about a
pivot in order to actuate the head 21 radially over the disk
surface 4, in a direction that decreases the PES. The control
circuitry 32 is also configured to receive commands from a
driver 58 in the host system 56.

In one embodiment, the data storage device 50 further
comprises a buffer in a memory, such as a semiconductor
memory (SM) 38 communicatively coupled to the control
circuitry 32. The SM 38 may serve as a cache for temporarily
storing write data received from the host 56 via a write com-
mand and read data requested by the host 56 via a read
command. The SM 38 can be implemented, for example,
using dynamic random access memory (DRAM), flash
memory, or static random access memory (SRAM).

In some embodiments, the data storage device 50 may
employ SM 38 as a boot cache for boot operations, an opera-
tional cache for normal operations, and a shared cache when
the SM 38 comprises a non-volatile memory for caching.
When caching for boot, new boot cache entries may evict
operational cache entries from the shared cache if necessary.
Thus, the maximum size of the boot cache is boot cache
exclusive size plus the shared cache size. The maximum size
of the operational cache is operational cache exclusive plus
shared cache size. During boot, operational cache entries will
not evict boot cache entries from the shared cache. However,
during aggressive caching mode, boot cache entries may evict
operational cache entries from the shared cache. In some

US 9,286,079 B1

3

embodiments, the aggressive caching mode for boot com-
mands is active only during boot.

In other embodiments, the cache for boot commands and
operational commands in SM 38 is implemented on a volatile
memory. Accordingly, in these embodiments, during boot,
the boot cache portion is allocated more space than the por-
tion for normal operational commands. During normal opera-
tions, the boot cache may be de-allocated or its size drasti-
cally reduced. In some instances, some boot entries may be
evicted in favor of operational entries, for example, to allow
for spin-down of the data storage device 50.

FIG. 2 shows a simplified sequence for boot that may be
executed by the host 56. As shown, the host 56 initially
powers on, and thus, the processor (not shown) of the host 56
may commence running. Upon starting, the processor of the
host 56 runs an instruction that transfers execution to the
location of the BIOS start-up program. The BIOS start-up
program typically runs a power-on self-test to check and
initialize required devices, such as communications inter-
faces, various peripherals, etc. For example, the BIOS goes
through a pre-configured list of non-volatile storage devices,
such as data storage device 50, until it finds one that is boot-
able.

Once the BIOS has found that the data storage device 50 is
a bootable device, host 56 commences loading the operating
system. For example, from data storage device 50, the host 56
loads program code from the boot sector and transfers execu-
tion to the boot code. For example, the data storage device 50
may comprise a master boot record (MBR, not shown) on disk
surface 4 at a predetermined location. The MBR code
instructs the host 56 to check the partition table of the data
storage device 50 for a bootable partition and loads the boot
sector code from that partition and executes it.

The code in the boot sector may vary depending on the
operating system. However, generally, the code in the boot
sector loads and executes the operating system kernel.

The embodiments may be implemented on any interface
such as SATA, SAS, SCSI, and the like. Many of the com-
mands and states have similar analogs on these and other
interfaces, which are considered within the scope of the
embodiments. In addition, the embodiments may be applied
to any operating system, such as Windows, Mac OS, LINUX,
UNIX, etc. For example, in one embodiment, there are a
number of ATA/ATAPI Command Set-2 (ACS-2) commands
that indicate stages in the evolution from boot to operation. In
the boot phase, certain commands are identified as indicating
a transition from boot to normal operations. During boot,
many features are not yet configured both to allow later con-
figuration and to increase the likelihood of successful com-
mand completion. However, the configuration of these fea-
tures and the locking-in of configurations indicate
progression to the operational state. In the embodiments, the
following commands may be considered relevant indicators
of this progression:

SECURITY FREEZE LOCK:—This command prevents
the modification of security features until a power-off or
hardware reset occurs. For a system using security, this is a
strong indication that all relevant passwords and security
features have been set. This, in turn, is a strong indication that
OS initialization is well under way, if not complete. If used,
this command must follow all security-related configura-
tions, and should occur before any user or application pro-
gram can change the security state.

SET_FEATURES—Disable reverting to power-on
defaults: This command prevents previously set features from
changing state in response to a soft reset. This command is a
strong indicator that feature configuration is complete, some-

10

15

20

25

30

35

40

45

50

55

60

65

4

thing much more likely to be done by the OS than by the
BIOS, and probably occurring near the end of OS load. Issu-
ing this command early would complicate the attempts of OS
architects to modify the initialization order of the OS boot.

SET_FEATURES—Enable volatile write cache: This
command enables the volatile write cache, which is off by
default. Unsophisticated software, such as the BIOS and the
early boot loaders of operating systems, favor safety over
speed. Keeping this cache off increases the likelihood of
successful recovery after an unsuccessful boot. Furthermore,
booting involves much more reading than writing, so the
benefits of the write cache are limited. Once the OS is suffi-
ciently booted and configured, it will enable the write cache to
take advantage of the improved operational performance.

Of course, the commands described above are provided as
non-limiting examples of commands that may indicate a boot
transition. Other commands, such as CACHE_FLUSH, alone
or in combination, may indicate a boot transition.

In addition, the following mode change may be considered
relevant indicators of boot progression:

Command Queue Depth—Increasing above depth of one:
Because BIOS load is single-threaded and straightforward, it
does not attempt to use command queuing to increase perfor-
mance. Modern operating systems, however, do employ com-
mand queuing for performance and to allow multiple threads
and processes to avoid unnecessary blockage due to disk
operation serialization.

By tracking the occurrence of the aforementioned com-
mands, the progress of the boot can be inferred, and the
desirability to cache accessed blocks can be refined. A score-
board or other state machine could be employed to enhance
confidence in a partial-response maximum-likelihood fash-
ion.

In some embodiments, the control circuitry 32 monitors
and logs the boot commands of the host 56. The control
circuitry 32 may store this history of boot commands in SM
38, for example, if SM 38 comprises a non-volatile memory,
such as a flash memory. Alternatively, the control circuitry 32
may store the boot command sequence logs in a predeter-
mined location on disk surface 4. The control circuitry 32 may
store the commands as well as the data associated with the
commands. In addition, the control circuitry 32 may store
various numbers of historical boots of various lengths and
associated data.

From the historical boot data, the control circuitry 32 may
thus predict the progression of the boot sequence of the host
56. As will be further described below, the control circuitry 32
may determine one or more triggers that indicate a boot
transition to normal operations. The triggers may be config-
ured, for example, by a setting or by an administrator input.
Alternatively, the triggers may be determined dynamically
based on an analysis of the history. For example, the most
frequent boot commands received within a certain time
period of normal operations may be identified by the control
circuitry 32 as possible candidates for triggers. Therefore, on
the next boot sequence, the control circuitry 32 may utilize
these triggers in optimizing its caching behavior and opera-
tions.

FIGS. 3-7 illustrate exemplary process flows in accordance
with one embodiment. The control circuitry 32 may be con-
figured to perform these methods based on program code that
has been loaded into SM 38 from another memory, such as a
flash memory, or from a predetermined location or sector on
the disk surface 4.

In one embodiment, as shown in FIGS. 3 and 4, an aggres-
sive form of detection would be to use the first trigger encoun-
tered as positive assertion that the operating system is transi-

US 9,286,079 B1

5

tioning from boot. Alternatively, a more conservative
approach as shown in FIGS. 5 and 6 would be to wait for a
second unique trigger to occur before determining the transi-
tion had occurred. In yet another embodiment, an even more
conservative approach as shown in FIG. 7 may involve inter-
vening time or commands between the two triggers, for
example, to wait for two more closely spaced triggers.

To increase robustness of the methods, in some embodi-
ments, multiple existing indicators (e.g. time from reset,
amount of data read and written, number of read and write
commands received, inter-command gap, previously stored
command activity) may be used in concert. It is conceivable
that a mass storage device, such as data storage device 50,
could be used ina simple or primitive system that does notuse
the aforementioned commands, and in such a case, the other
indicators could provide an alternate mechanism to make a
less confident, but still useful estimation of boot progress, and
thus cache desirability.

In some embodiments, the transition triggers described
above have been observed in a Windows Operating System by
Microsoft Corporation boot trace. However, boot transition
detection can apply to other full-featured operating systems
(e.g. Linux, Apple OS X, UNIX) as well. The multiple trigger
evaluation scheme mentioned above may increase the reli-
ability of detecting boot transition.

Referring now to FIG. 3, a flow diagram is shown illustrat-
ing an exemplary process and a transition in caching modes in
accordance with an embodiment. In particular, during boot up
(especially during the operating system load on host 56), the
data storage device 50 employs more aggressive caching to
give preferential treatment to boot commands. In some
embodiments, the aggressive caching may comprise boot
commands evicting, if necessary, non-boot commands from
the cache. Alternatively, the aggressive caching may com-
prise allocating more cache space for boot commands (as
shown in FIG. 3).

As shown in FIG. 3, the cache for boot commands and
operational commands is conceptually shown. During boot,
the cache may store boot commands as they are issued, which
is illustrated as an arrow showing the boot commands grow-
ing downward into the unused portion of the cache. During
aggressive caching for boot commands, boot commands are
given priority, and if needed, may evict operation commands
from the cache. As shown, by the time that the boot transition
has passed, the boot commands portion of the cache has
grown (as indicated by the arrow and growth into the unused
portion, which is now smaller). In addition, the operational
commands portion of the cache may now grow (as indicated
by the upward pointing arrow) as more normal operations of
the host 56 may commence as boot ends. In other words, the
portions of the cache for boot commands and operational
commands may “grow” in different directions toward each
other by consuming unused space. However, of note, during
normal caching mode, operational commands may now evict
boot commands as needed, e.g., if the two cache portions
begin to overlap.

Upon detecting a boot transition, the data storage device 50
may then modify it’s caching policy to suit normal opera-
tions. For example, the data storage device 50 may provide
more space in a command cache in SM 38 for operation
commands.

FIG. 4 illustrates a flow diagram illustrating an exemplary
process for detecting a boot transition based on identifying a
boot command in accordance with an embodiment. In par-
ticular, in one embodiment, the control circuitry 32 has been
configured to detect a boot transition based on identifying an
ATA Security Freeze Lock command. Of note, the use of a

10

15

20

25

30

35

40

45

50

55

60

6

Security Freeze Lock command may also have been derived
by the control circuitry 32 based on an analysis of the previ-
ous boot history.

Of note, the control circuitry 32 may be configured to
detect a boot transition based on multiple occurrences of a
trigger. For example, in one variation of the Windows oper-
ating system, the Security Freeze Lock has been observed to
occur twice, i.e., early in the operating system load and then
just before normal operations. In some embodiments, there-
fore, the control circuitry 32 may be configured to recognize
this second (or later) occurrence of a command as indicating
a boot transition.

FIG. 5 illustrates a flow diagram illustrating an exemplary
process for detecting a boot transition based on identifying a
boot command or a command queue depth (CQD) in accor-
dance with an embodiment. In particular, as shown, the con-
trol circuitry 32 may utilize multiple triggers, alone or in
combination, to indicate a boot transition. For example, as
shown, the ATA Disable Revert command and a command
queue depth (CQD) have been configured as triggers for
detecting a boot transition. In some embodiments, a CQD>1
may be utilized as a trigger.

FIG. 6 illustrates a flow diagram illustrating an exemplary
process for boot transition based on identifying a plurality of
triggers in accordance with an embodiment. As shown, the
control circuitry 32 may be configured with a plurality of
triggers and then count these occurrence until a threshold, m,
has been met or exceeded. For example, as noted above, the
Security Freeze Lock command may occur multiple times
during an operating system load. In addition, this policy may
beuseful when the history recorded by the data storage device
50 indicates that a finite set of commands frequently occur
during boot transition. However, the specific order that these
commands occur may vary between different boot sequences.
Accordingly, the control circuitry 32 may utilize this counting
approach.

FIG. 7 illustrates a flow diagram illustrating an exemplary
process for boot transition based on identifying a trigger and
then passage of a certain time delay in accordance with an
embodiment. As shown, the control circuitry 32 may utilize a
specific trigger or combination of triggers as indicated the
beginning of the boot transition. In response, a timer may be
employed to allow any commands that occurs soon after the
triggers to be cached aggressively.

The specific triggers and length of time used by the control
circuitry 32 may be determined by a setting or dynamically
adjusted, for example, based on the boot history logs recorded
by the data storage device.

The features and attributes of the specific embodiments
disclosed above may be combined in different ways to form
additional embodiments, all of which fall within the scope of
the present disclosure. Although the present disclosure pro-
vides certain embodiments and applications, other embodi-
ments that are apparent to those of ordinary skill in the art,
including embodiments, which do not provide all of the fea-
tures and advantages set forth herein, are also within the scope
of this disclosure. Accordingly, the scope of the present dis-
closure is intended to be defined only by reference to the
appended claims.

What is claimed is:

1. A method for operating a mass storage device, said
method comprising:

detecting power-up of a host device connected to a mass

storage device over a communications interface;
providing boot code to the host device over the communi-
cations interface in response to said detecting the power-

up;

US 9,286,079 B1

7

setting a cache of the mass storage device to a boot caching

mode;

receiving, by the mass storage device, data storage access

commands from the host device;

monitoring a command queue configured to bufter the data

storage access commands;

determining that a depth of the command queue has

increased to a value greater than one;

determining a transition from a boot process to normal

operations by the host device based at least in part on the
increase of the command queue depth; and

setting the cache of the mass storage device to an opera-

tional mode based on the transition.

2. The method of claim 1, wherein said determining the
transition is further based at least in part on detecting an ATA
security freeze lock command from the host device.

3. The method of claim 1, wherein said determining the
transition is further based at least in part on detecting an ATA
set features command from the host device.

4. The method of claim 1, wherein said determining the
transition is further based at least in part on a determination
that the depth of the command queue has reached a threshold
value.

5. The method of claim 1, wherein said determining the
transition is further based at least in part on detecting receipt
of'a sequence of data storage access commands from the host
device that are associated with a boot transition.

6. The method of claim 1, wherein said determining the
transition is further based at least in part on detecting receipt
of'a plurality of commands from a predetermined set of com-
mands from the host device that are associated with a transi-
tion to normal operations by the host device.

7. The method of claim 1, wherein said determining the
transition is further based at least in part on detecting expira-
tion of a timer.

8. The method of claim 1, wherein said determining the
transition is further based at least in part on detecting an ATA
cache flush command from the host device.

9. A mass storage device comprising:

a non-volatile data storage medium comprising boot code

for boot up of a host device;

a cache configured for a boot mode and an operational

mode;

a command queue;

an interface configured for communications with the host

device; and

a controller configured to:

power up the mass storage device;

set the cache to the boot mode;

receive data storage access commands from the host
device over the interface;

buffer the data storage access commands in the com-
mand queue;

determine that a depth of the command queue has
increased to a value greater than one;

determine a transition from a boot sequence to normal
operations by the host based at least in part on the
increase of the command queue depth; and

set the cache to the operational mode based on the tran-
sition.

10. The mass storage device of claim 9, wherein the con-
troller is further configured to determine the transition at least
in part by detecting a security freeze lock command from the
host device.

10

15

20

25

30

35

40

45

50

55

60

65

8

11. The mass storage device of claim 9, wherein the con-
troller is further configured to determine the transition at least
in part by detecting a set features command from the host
device.

12. The mass storage device of claim 9, wherein the con-
troller is further configured to determine the transition at least
in part by determining when the command queue depth
reaches a threshold value.

13. The mass storage device of claim 9, wherein the con-
troller is further configured to determine the transition at least
in part by detecting a sequence of commands from the host
device that historical boot data maintained by the mass stor-
age device indicates are associated with a boot transition.

14. The mass storage device of claim 9, wherein the con-
troller is further configured to determine the transition at least
in part by detecting a set of commands from the host device
that historical boot data indicates are associated with a boot
transition.

15. The mass storage device of claim 9, wherein the con-
troller is further configured to determine the transition at least
in part by detecting expiration of a timer.

16. A method of booting up a host coupled to a mass storage
device, wherein the mass storage device comprises a cache
that is configurable in an operational mode and a boot mode,
said method comprising:

by a host coupled to a mass storage device:

sending a request to the mass storage device for power-
ing up the mass storage device;

receiving boot code from the mass storage device;

setting a cache of the mass storage device to a boot
mode;

providing data storage access commands to the mass
storage device; and

upon transition from a boot process to normal operations
by the host, receiving data from the mass storage
device associated with an operational mode of the
cache of the mass storage device;

wherein the mass storage device is configured to buffer
the data storage access commands in a command
queue and determine the transition based at least in
part on an increase of a depth of the command queue
to a value greater than one.

17. The method of claim 16, wherein one or more of the
data storage access commands indicates the transition from
the boot process to normal operations by the host.

18. The method of claim 17, wherein the one or more of the
data storage access commands comprises a security freeze
lock command.

19. The method of claim 17, wherein the one or more of the
data storage access commands comprises a set features com-
mand.

20. The method of claim 17, wherein the one or more of the
data storage access commands comprises a predetermined
sequence of commands.

21. The method of claim 17, wherein the one or more of the
data storage access commands comprises a plurality of com-
mands from a predetermined set of commands.

22. A mass storage device comprising:

a non-volatile data storage medium comprising boot code

for boot up of a host device;

a cache configured for a boot mode and an operational

mode;

an interface configured for communications with the host

device; and

a controller configured to:

detect power-up of the host device;

US 9,286,079 B1

9

provide the boot code to the host device over the inter-
face in response to said detecting the power-up;

set the cache to the boot mode;

receive data storage access commands from the host
device;

monitor a command queue configured to buffer the data
storage access commands from the host;

determine that a depth of the command queue has
increased to a value greater than one;

determine that the host device has transitioned from a
boot process to normal operations based at least in
part on the increase of the command queue depth; and

set the cache of the mass storage device to the opera-
tional mode based on the transition of the host device
to normal operations.

#* #* #* #* #*

10

15

10

